数形结合是中学数学中六种重要基本思想方法之一,是数学的本质特征.华罗庚先生曾指出:“数与形本是两依倚,焉能分作两边飞. 数缺形时少直观, 形少数时难入微.”在解决数学问题时,将抽象的数学语言同直观的图形相结合,实现抽象的概念与具体形象的联系和转化,使数与形的信息相互渗透,可以开拓我们的解题思路,使许多数学问题简单化.
数与形是一对矛盾,它包含“以形助数”和“以数助形”两个方面,数形结合思想的应用形式大体可分为代数问题的几何解法与几何问题的代数解法两个方面,它渗透于中学教材之中,本文试从函数图像和几何图形两个方面,结合中学教材的实际情况,举例说明“以形助数”在解决问题中的一些妙用.
一、利用数形结合思想解决集合的问题.
1、利用韦恩图法解决集合之间的关系问题.
一般用圆来表示集合,两圆相交则表示两集合有公共元素,两圆相离则表示两个集合没有公共元素.利用韦恩图法能直观地解答有关集合之间的关系的问题.如:
例1、有48名学生,每人至少参加一个活动小组,参加数理化小组的人数分别为28,25,15,同时参加数理小组的8人,同时参加数化小组的6人,同时参加理化小组的7人,问同时参加数理化小组的有多少人?
分析:我们可用圆A、B、C分别表示参加数理化小组的人数(如图),则三圆的公共部分正好表示同时参加数理化小组的人数.用n表示集合的元素,则有:
即:
∴
,即同时参加数理化小组的有1人.
2、利用数轴解决集合的有关运算和集合的关系问题.如:
例2、已知集合
分析:先在数轴上表示出集合A的范围,要使
,由包含于的关系可知集合B应该覆盖集合A,从而有:
,这时
的值不可能存在.要使
,当a >0时集合A应该覆盖集合B,应有
成立.
.
二.利用数形结合思想解决方程和不等式问题.
1.利用二次函数的图像解决一元二次方程根的分布情况问题.
通过
的相互转化,利用函数y=f(x)的图象直观解决问题.如:
例3、如果方程
的两个实根在方程
的两实根之间,试求
与
应满足的关系式.
分析:我们可联想对应的二次函数
,
的草图.这两个函数图像都是开口向上,形状相同且有
公共对称轴的抛物线(如图).要使方程
的两实根在方程
的两实根之间,则对应的函数图像
与
轴的交点应在函数图像
与
轴的交点之内,它等价于抛物线
的顶点纵坐标不大于零且大于抛物线
的顶点纵坐标.由配方方法可知
与
的顶点分别为:
.故可求出
与
应满足的关系式为:
.
2.利用二次函数的图像求一元二次不等式的解集.
求一元二次不等式的解集时,只要联想对应的二次函数的图像,确定抛物线的开口方向和与
轴的交点情况,便可直观地看出所求不等式地解集.如
例4、解不等式
.
分析:我们可先联想对应的二次函数
的图像.从
解得
知该抛物线与
轴交点横坐标为-2,3,当
取交点两侧的值时,即
时,
.即
.故可得不等式
的解集为:
.
3.利用函数图像解决方程的近似解或解的个数问题.
通过构造函数,把求方程解的问题,转化为两函数
图像的交点问题.如:
例5、解方程
分析:由方程两边的表达式我们可以联想起函数
,作出这两个函数的图像,这两个函数图像交点的横坐标为方程的近似解,可以看出方程的近似解为
.
例6、设方程
,试讨论
取不同范围的值时其不同解的个数的情况.
分析:我们可把这个问题转化为确定函数
与
图像交点个数的情况,因函数
表示平行于
轴的所有直线,从图像可以直观看出:
③当
时,
与
有四个不同交点,原方程不同解的个数有四个;④当
时,
与
有三个交点,原方程不同解的个数有三个;
4.利用三角函数的图像解不等式.
通过构造函数,把不等式问题转化为两个函数图像的关系问题.如:
例7、解不等式
分析:从不等式的两边表达式我们可以看成两个函数
.在
上作出它们的图像,得到四个不同的交点,横坐标分别为:
,而当
在区间
内时,
的图像都在
的图像上方.所以可得到原不等式的解集为:
.
三、利用函数图像比较函数值的大小.
一些数值大小的比较,我们可转化为对应函数的函数值,利用它们图像的直观性进行比较.如:
例8、试判断
三个数间的大小顺序.
分析:这三个数我们可以看成三个函数:
在
时,所对应的函数值.在同一坐标系内作出这三个函数的图像(如图),从图像可以直观地看出当
时,所对应的三个点
的位置,从而可得出结论:
.
四、利用单位圆中的有向线段解决三角不等式问题.
在教材中利用单位圆的有向线段表示角的正弦线,余弦线,正切线,并利用三角函数线可作出对应三角函数的图像.如果能利用单位圆中的有向线段表示三角函数线,应用它解决三角不等式问题,简便易行.如:
例9、解不等式
.
分析:因为正弦线在单位圆中是用方向平行于
轴的有向线段来表示.我们先在
轴上取一点P,使
,恰好表示角
的正弦线
,过点P作
轴的平行线交单位圆于点
,在
内,
分别对应于角
,(这时所对应的正弦值恰好为
).而要求
的解集,只需将弦
向上平移,使
重合(也即点P向上平移至与单位圆交点处).这样
所扫过的范围即为所求的角.原不等式的解集为:
.
五.利用两点间距离公式或斜率公式模型构造辅助图形,找出代数问题的几何背景,简便解答某些代数综合题.如:
例10.求证:
(a与c、b与d不同时相等)
分析:考察不等号两边特点为,其形式类同平面上两点间距离公式.在平面直角坐标系中设A(a,b),B(c,d),O(0,0).
如图|AB|=
,|AO|=
,|BO|=
,当A、B、O三点不共线时,|AB|<|AO|+|BO|.当A、B、O三点共线,且A、B在O点同侧时,|AB|<|AO|+|BO|.当A、B、O三点共线,且A、B在O点异侧时,或A、B之一与原点O重合时,|AB|=|AO|+|BO|.
.综上可证
.
例11.求函数y=
的最小值.
分析:考察式子特点,从代数的角度求解,学生的思维受阻,这时利用数形结合为转化手段,引导学生探索函数背后的几何背景,巧用两点间距离公式,可化为
=
令A(0,1),B(2,2),P(x,0),则问题转化为在X轴上求一点P,使|PA|+|PB|有最小值.如图,由于AB在X轴同侧,故取A关于X轴的对称点
,故(|PA|+|PB|)
min=
.
例12.已知点P(x,y)在线性区域
内,求(1)U=
;(2)V=
的值域
分析:由线性规划可知P(x,y)在Rt
OAB内(包括边界),U
min实质上是点M(4,3)到直线AB的距离
;V的值域实质上是直线PM斜率的取值范围
.