1.在知识发生过程中渗透数学思想方法
( 1)不简单下定义。数学概念既是数学思维的基础,又是数学思维的结果。所以概念教学不应简单给出定义,应当引导学生感受或领悟隐含于概念形成之中的数学思想。比如负数概念的教学,初一代数上册借助于温度计给出描述性定义,学生对负数概念往往难以透彻理解。若设计一个揭示概念与新问题间矛盾的实例,使学生感到“负数”产生的合理性和必要性,领悟其中的数学符号化思想的价值,则无疑有益于激发学生探究概念的兴趣,从而更深刻、全面的理解概念。我在演示温度计时提出这样一个问题:今年冬季某天北京白天的最高气温是零上10℃,夜晚的最低气温是零下5℃,问这一天的最高气温比最低气温高多少度。学生知道应该通过实施减法来求出问题的答案,但是,在具体列算式时遇到了困惑:是“10°-5°”吗?不对!“是零上10°-零下5°”吗?似乎对,但又无法进行运算。于是,一个关于“负数”及其表示的思考由此而展开了。再通过现实生活中大量表示相反意义的量,抽象概括出相反意义的量可用数学符号“+”与“-”来表示,从而解决了实际生活和数学中的一系列运算问题,教学也达到了知识与思想协调发展的目的。
( 2)定理公式教学中不过早给结论。数学定理、公式、法则等结论都是具体的判断,而判断则可视为压缩了知识链。教学中要恰当地拉长这一知识链,引导学生参与结论的探索、发现、推导的过程,弄清每个结论的因果关系,探讨它与其他知识的关系,领悟引导思维活动的数学思想。例如有理数加法法则的教学,我们通过设计若干问题,有意识地渗透或再现一些重要的数学思想方法。在讨论两个有理数相加有多少种可能的情形中,渗透分类思想;在寻找各种具体的有理数运算的结果的规律中,渗透归纳、抽象概括思想;在“两个相反数相加得零”写在“异号两个数相加”的法则里,渗透特殊与一般思想。
2.在思维教学活动过程中,揭示数学思想方法
数学课堂教学必须充分暴露思维过程,让学生参与教学实践活动,揭示其中隐含的数学思想,才能有效地发展学生的数学思想,提高学生的数学素养,下面以“多边形内角和定理”的课堂教学为例,简要说明。
教学目标:增强运用化归思想处理多边形问题的一般策略;掌握运用类比、归纳、猜想思想指导思维,发现多边形内角和定理的结论;学会用化归思想指导探索论证途径,掌握化归方法;加强数形结合思想的应用意识。
教学过程:( 1)创设问题情境,激发探索欲望,蕴涵类比化归思想。教师:三角形和四边形的内角和分别为多少?四边形内角和是如何探求的?(转化为三角形)那么,五边形内角和你会探索求吗?六边形、七边形…… n 边形内角和又是多少呢?( 2 )鼓励大胆猜想,指导发现方法,渗透类比、归纳、猜想思想。教师:从四边形内角和的探求方法,能给你什么启发呢?五边形如何化归为三角形?数目是多少?六边形…… n 边形呢?你能否用列表的方式给出多边形内角和与它们边数、化归为三角形的个数之间的关系?从中你能发现什么规律?猜一猜 n 边形内角和有何结论?类比、归纳、猜想的含义和作用,你能理解和认识吗?( 3 )暴露思维过程、探索论证方法,揭示化归思想、分类方法、教师。我们如何验证或推断上面猜想的结论呢?既然多边形内角和可化归为三角形来处理,那么化归方法是否唯一的呢?一点与多边形的位置关系怎样?(分类思想指导化归方法的探索)哪一种对获取证明最简洁?(至此,教材中“在多边形内任取一点 O ……的思维过程得以充分自然地暴露)( 4 )反思探索过程,优化思维方法,激活化归思想。教师:从上面的探索过程中,我们发现化归思想有很大作用,但是,又是什么启发我们用这种思想指导解决问题呢?原来,我们是选择考察几个具体的多边形,如四边形、五边形等,发现特殊情形下的解决方法,再把它运用到一种特殊化思想,它对提供解题方法有重要作用。我们再来考察一下式子: n 边形内角和 =n×180 ° -360 °,你能设计一个几何图形来解释吗?对于 n 边形内角和 = ( n-1 ) 180 ° -180 ° , 又能作怎样的几何解释呢?
让学生亲自参加与探索定理的结论及证明过程,大大激发了学生的求知兴趣,同时,他们也体验到“创造发明”的愉悦,数学思想在这一过程中得到了有效的发展。
3 .在问题解决方法的探索过程中激活数学思想方法
我们认为,数学知识可以用言传口授的方法传递给学生,而数学思想则显然不能,课堂教学中给学生的至多是关于数学思想方面的知识,不妨称为知识形态的数学思想,这种知识形态的数学思想需要经历学生个体独立的思维活动才能发展为认知形态的数学思想。换言之,数学教学在使学生初步领悟
|