数学对于很多同学来说都是一个老大难的问题,可能小学数学,初中数学对你来说还没有那么困难,但是自从你升入高中之后,数学便成为了一门最为深奥的课题,但是,小编认为只要掌握了高中数学的知识点,其实学习数学也没有那么困难。
一.函数知识点总结
1.函数的定义
函数是高考数学中的重点内容,学习函数需要首先掌握函数的各个知识点,然后运用函数的各种性质来解决具体的问题。设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A->B为从集合A到集合B的一个函数,记作y=f(x),x∈A
2.函数的定义域
函数的定义域分为自然定义域和实际定义域两种,如果给定的函数的解析式(不注明定义域),其定义域应指的是使该解析式有意义的自变量的取值范围(称为自然定义域),如果函数是有实际问题确定的,这时应根据自变量的实际意义来确定,函数的值域是由全体函数值组成的集合。
3.求解析式
求函数的解析式一般有三种种情况:
①根据实际问题建立函数关系式,这种情况需引入合适的变量,根据数学的有关知识找出函数关系式。
②有时体中给出函数特征,求函数的解析式,可用待定系数法。
③换元法求解析式,f[h(x)]=g(x)求f(x)的问题,往往可设h(x)=t,从中解出x,代入g(x)进行换元来解。掌握求函数解析式的前提是,需要对各种函数的性质了解且熟悉。
目前我们已经学习了常数函数、指数与指数函数、对数与对数函数、幂函数、三角函数、反比例函数、二次函数以及由以上几种函数加减乘除,或者复合的一些相对较复杂的函数,但是这种函数也是初等函数。
二.因式分解提取公因式
1.提公因式。把各项中相同字母或因式的最低次幂的积作为公因式提出来;当系数为整数时,还要把它们的最大公约数也提出来,作为公因式的系数;当多项式首项符号为负时,还要提出负号。
2.用公因式分别去除多项式的每一项,把所得的商的代数和作为另一个因式,与公因式写成积的形式。由于题目形式千变万化,解题时也不能生搬硬套。例如,有的需要先对题目适当整理变形;有的分解因式后多项式因式中有同类项的还要进行合并化简;还有的提取公因式后能用其他方法继续分解。
3.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.
4.在提取多项式各项的公因式时,对数字系数和因式要分别进行考虑.如果是整数系数,提取它们的最大公约数;如果是分数系数,提取它们分母的最小公倍数;相同的因式应提取次数最低的.
三.集合的知识点总结
1.集合间的关系
①子集:如果集合A中所有元素都是集合B中的元素,则称集合A为集合B的子集。
②真子集:如果集合A⊆B,但存在元素a∈B,且a不属于A,则称集合A是集合B的真子集。
③.集合相等:集合A与集合B中元素相同那么就说集合A与集合B相等。
子集:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作:A⊆B(或B⊇A),读作“A包含于B”(或“B包含A”),这时我们说集合是集合的子集,更多集合关系的知识点见集合间的基本关系
2.集合的运算
①并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}
②交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}
③补集
当然,高中数学的知识点并非仅仅只有这三点,还有很多其他的知识点,这是需要大家自己去学习,去总结的,当你亲自去总结之后,就会发现原来学习数学是那么简单又有趣味的一件事情啊!这时候,也许你就会爱上数学奥!