加法原理:一般地,如果完成一件事有k类方法,第一类方法中有m1种不同做法,第二类方法中有m2种不同做法 ,…,第k类方法中有mk种不同的做法,则完成这件事共有n= m1 + m2 +…+mk 种不同的方法.
加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.
例如:某件工作需要钳工2人和电工2人共同完成。现有钳工3人、电工3人,另有1人钳工、电工都会。从7人中挑选4人完成这项工作,共有多少种方法?
分析:分两类情况讨论:
1.都会的这1人被挑选中,则有:
(1)如果这人做钳工的话,则再按乘法原理,先选一名钳工有 3种方法,再选2名电工也有3种方法;所以有3×3=9(种)。
(2)同样,这人做电工,也有9种方法。
2.都会的这一人没有被挑选,则也有3×3种方法。所以一共有9+9+9=27(种)方法。